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A general formula for the canonical partition function for a parastatistical system of any order is derived.
The formula expresses the canonical partition functions for these in terms of sums of Schur functions.The only
hitherto known result due to Suranyi@Phys. Rev. Lett.65, 2329 ~1990!# for parasystems of order two is
obtained as a special case. Our results apply not only to parastatistics but to all statistics that can be defined on
the basis of the permutation group, including those for which no simple definition in terms of the algebra of
creation and annihilation operators is possible.@S1063-651X~96!04107-4#

PACS number~s!: 05.30.2d, 03.65.Bz, 05.70.Ce

Parastatistics@1–3# was introduced by Green@1# as a gen-
eralization of Bose and Fermi statistics. This generalization,
carried out at the level of the algebra of creation and annihi-
lation operators, involves introducing trilinear relations in
place of the bilinear relations that characterize Bose and
Fermi systems. The Fock space of a para-Bose system of
orderp, wherep is any positive integer, is characterized by
the trilinear relations
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and the supplementary conditions
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Similarly, the trilinear relations
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together with the supplementary conditions~2! define para-
Fermi systems of orderp. Bose and Fermi statistics arise
from these as a special case corresponding top51. A con-
venient representation of para systems is provided by the
Green decomposition. Here the annihilation~creation! opera-
tors ai(ai

†) for a para system of orderp are expressed as
sums of annihilation~creation! operatorsaia(aia

† ), which
carry an extra labela taking values 1, . . . ,p,

ai5 (
a51

p
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†5 (
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p

aia
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The operatorsaia andaia
† obey commutation relations that

are partly bosonic and partly fermionic. For a para-Bose sys-
tem of orderp these anomalous commutation relations are

@aia ,aja#50; @aia ,aja
† #5d i j ,

$aia ,ajb%5$aia ,ajb
† %50 if aÞb. ~5!

For a para-Fermi system of orderp, the corresponding rela-
tions are

$aia ,aja%50; $aia ,aja
† %5d i j ,

@aia ,ajb#; @aia ,ajb
† #50 if aÞb. ~6!

The definition of parasystems via the Green decomposi-
tion is more amenable to physical interpretations and pos-
sible applications than that based on the trilinear relations
given above. Indeed, by interpretinga as a new quantum
number a model for quarks was proposed by Greenberg@4#
as a possible way to overcome certain difficulties with the
symmetry properties of three quark wave functions.

Recent developments in interacting many-particle systems
have shown that the quasiparticles in such systems may ex-
hibit features far more exotic than those permitted to elemen-
tary particles and have led to the advent of fractional statis-
tics @5–7#, which interpolate between Bose and Fermi
statistics. Of these the anyon statistics@5#, based on one-
dimensional representations of the braid group, arises in the
context of effectively two-dimensional condensed matter
systems. The anyon stastistics is peculiar to two-dimensional
systems and a possible generalization of the notion of frac-
tional statistics to any dimension has been proposed by the
Haldane@6#. In view of the rich variety of statistics that the
quasiparticles may exhibit, it appears quite possible that par-
astatistcs, though originally intended for elementary par-
ticles, may be realized in condensed matter physics via the
Green decomposition. However, in seeking such applications
of parastatistics, it is essential that one has a complete
knowledge of the thermodynamic properties of ideal para
systems. Often the nature of quasiparticles is deduced by
comparing the experimentally observed thermodynamic
properties with those of known model systems. It seems sur-
prising that, though parastatistics has been around for over
four decades, the first calculation of the canonical partition
function for a nontrivial parasystem, a parasystem of order
two, was reported only a few years ago@8#. The aim of the
present work is to complete this task for a parastatistical
system of any order. Our work encompasses not only par-
astatistics of any order but also all statistics that can be de-
fined on the basis of the permutation group including those
for which no simple definition in terms of the algebra of
creation and annihilation operators is possible. This is
achieved by following the approach to parastatistics pio-
neered by Messiah and Greenberg@9# and further investi-
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gated by Hartle, Stolt, and Taylor@10#. In this approach par-
astatistics arises in the quantum mechanical description of an
assembly ofN-identical particles with the permutation group
SN playing a central role in defining various kinds of statis-
tics including the parastatistics of Green.

We begin with the Maxwell-Boltzmann or the infinite sta-
tistics and show how various permutation statistics arise
from it. Consider a Hilbert spaceH built by anN-fold tensor
product of a Hilbert spaceH of dimM . Let 1,2,3,. . . ,M
denote the basis vectors ofH ande1 ,e2 , . . . ,eM the associ-
ated energies. TheMN basis vectors ofH correspond to each
term in the product

~7!

One may consider two decompositions of this set ofMN

states.
1. Decomposition based on occupation numbers: This de-

composition is required for defining the canonical partition
function for an ideal system. Here one groups together states
that have the same number of 1’s, 2’s, etc., regardless of
their location in the product. Each such group is character-
ized by a composition ofN, i.e., by a set of occupation
numbersn[(n1 ,n2 , . . . ,nM), adding up toN, which give
the number of times 1,2,. . . ,M occur in the states in that
group. Elementary combinatorial considerations tell us that
each such group containsN!/n1!n2! •••nM! states. The ca-
nonical partition function is therefore given by

ZN
inf~x1 , . . . ,xM !5 (

ni
Sni5N

N!

n1!n2! •••nM!
x1
n1x2

n2
•••xM

nM ,

~8!

where xi[exp(2bei);i51, . . . ,M . Using the fact that
N!/n1!n2! •••nM! is a symmetric function of
n1 ,n2 , . . . ,nM we may rewrite the sum over compositions
of N in ~8! in terms of a sum over partitions ofN

ZN
inf~x1 , . . . ,xM !5 (

l
ulu5N

N!

l1!, . . . ,lM!
ml~x1 , . . . ,xM !.

~9!

Herel[(l1 ,l2 , . . . ,lM), l1>l2>l3•••>lM is a parti-
tion of N ~indicated byulu5N), andml(x1 , . . . ,xM) de-
notes the monomial symmetric function@11# corresponding
to the partitionl:

ml~x1 , . . . ,xM !5( x1
l1x2

l2
•••xM

lM . ~10!

The sum on the right-hand side~rhs! of ~10! is over all dis-
tinct permutations of (l1 , . . . ,lM).

The sum in~8! can be carried out using the multinomial
theorem and the result is

ZN
inf~x1 , . . . ,xM !5~x11•••1xM !N

5 (
l

ulu5N

N!

l1!, . . . ,lM!
ml~x1 , . . . ,xM !.

~11!

Stated in words,~11! tells us that the contribution of each
partition l to the partition function is given by
ml(x1 , . . . ,xM) times the number of states
N!/l1!, . . . ,lM! in that partition. It may also be noted here
that the monomial symmetric functions play a special role in
the context of decompositions based on occupation numbers.
Given the canonical partition function, its expansion in terms
of the monomial symmetric functions yields all information
regarding the decomposition based on occupation numbers.
For instance, settingx15x25xM51 in ~11! we obtain

MN5(
l

N!

l1 . . .lM!
ml~1, . . . ,1!, ~12!

which tells us that each partition (l1 , . . . ,lM) corresponds
toml(1, . . . ,1)sets of occupation numbers obtained by dis-
tinct permutations ofl i ’s and each such set contains
N!/l1! . . . lM! states. For a givenl the number
ml(1,•••,1) is given byM !/m1!m2! •••, wheremi denotes
the number of timesl i occurs in the partitionl.

2. Decomposition based on the permutation group: In this
decomposition we regard theMN states as the carrier space
for an MN dimensional representation of the permutation
groupSN . This reducible representation can be decomposed
into the irreducible representations ofSN which, as is well
known, are in one-to-one correspondence with the partitions
of N. All features of this decomposition can be deduced
from the partition functionZN

inf(x1 , . . . ,xM) as follows. Us-
ing the Frobenius formula,~11! may be written as

ZN
inf~x1 , . . . ,xM !5~x11•••1xM !N

5 (
l

ulu5N

n~l!sl~x1 , . . . ,xM !, ~13!

wheren(l) denotes the dimension of the irreducible repre-
sentationl of SN andsl(x1 , . . . ,xM) denote the Schur func-
tions @11,12#.

sl~x1 , . . . ,xM !5
det~xi

l j1M2 j
!

det~xi
M2 j !

; 1< i , j<M . ~14!

Note that the Schur functions, like the monomial symmetric
functions, are symmetric functions and can be defined in
many different ways. The definition given above is the one
that Schur originally used. We shall encounter other defini-
tions of these functions later. The relation~13! will play an
important role later and it may be interpreted as follows. The
contribution of each irreducible representationl of SN to the
partition function is equal to the Schur function
sl(x1 , . . . ,xM) times the number of states in the irreducible
representationl, i.e., its dimensionn(l). Thus we see that
in this decomposition the Schur functions play the same role
as the monomial symmetric functions play in the decompo-
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sition based on the occupation numbers. For instance, setting
x15x25•••5xM51 in ~13! we get

MN5 (
l

ulu5N

n~l!sl~1, . . . ,1!, ~15!

which tells us thatsl(1, . . . ,1) is thenumber of times the
irreducible representationl occurs in this decomposition.
The numbersl(1, . . . ,1) isgiven by

sl~1, . . . ,1!5)
i, j

M
~l i2l j1 j2 i !

~ j2 i !
. ~16!

So far we have been dealing withH in which all the
MN states were considered as independent. Following Refs.
@9# and @10# we now construct out of it a generalized ray
spaceHphy by ~a! admitting only those operators onH that
are permutation symmetric and~b! identifying those states in
H that have the same expectation values for all permutation
symmetric operators.

These assumptions, by Schur’s lemma, imply that all
states inH belonging to an irreducible representationl of
SN count as one state ofHphy. This together with the inter-
pretation of~13! stated above implies that in writing down
the partition function appropriate toHphy we should take the
contribution of each irreducible representationl of SN not as
n(l)sl(x1 , . . . ,xM) but assl(x1 , . . . ,xM). The partition
function appropriate toHphy is thus given by

ZN
HST~x1 , . . . ,xM !5 (

l
ulu5N

sl~x1 , . . . ,xM !. ~17!

This is the key result of this work.~Here we use the super-
scripts HST to denote Hartle, Stolt, and Taylor in honor of
their contributions to parastatistics.!

We may arrive at the above result from the decomposition
~11! as well. In this decomposition eachl corresponds to
N!/l1! •••lM! states, which provide a reducible representa-
tion of SN of dimensionN!/l1! •••lM!. Decomposing it
into the irreducible representations ofSN and using a known
mathematical result@12# we obtain

N!

l1!, . . . ,lM!
5(

x
Kxln~x!, ~18!

whereKxl denote the Kostka numbers@11,12#. Using~18! in
~11! we can rewrite~11! as

ZN
inf~x1 , . . . ,xM !5(

x
n~x!(

l
Kxlml~x1 , . . . ,xM !.

~19!

Following the same logic as above, and settingn(x)51 we
obtain the following expression forZN

HST in terms of the mo-
nomial symmetric functions:

ZN
HST~x1 , . . . ,xM !5(

l
S (

x
KxlDml~x1 , . . . ,xM !,

~20!

which, in view of an alternative definition of Schur functions
@11,12# given by

sx~x1 , . . . ,xM !5S (
l

KxlDml~x1 , . . . ,xM ! ~21!

is easily seen to be the same as~17!. The above expression
for ZN

HST in terms of the monomial symmetric functions gives
us a complete picture of the occupation number decomposi-
tion ofHphy. The number of states corresponding to a set of
occupation numbers (l1 , . . . ,lM) ~or any distinct permuta-
tion thereof! is given by ((xKxl). As to the Kostka numbers
Klx that appear in the above equations, there is a simple
combinatorial algoritham to compute them. For given parti-
tions l5(l1 ,l2 , . . . ,lM) and x5(x1 ,x2 , . . . ,xM) of N
the Kostka numberKlx is equal to the number of ways in
which the Young tableau corresponding to the partitionl
can be filled up withx1 1’s, x2 2’s, etc. in such a way that
the numbers along the rows when read from left to right do
not decrease and the numbers along the columns when read
from top to bottom increase. Thus, for instance, for the par-
titions l5(4,2) andx5(3,2,1) of 6 we getKlx52.

So far no restrictions have been put onl — the sum on
the rhs of~17! is over all partitions ofN. We shall refer to
this statistics as HST statistics. The para-Bose case of order
p arises when we restrict the sum in~17! to only those par-
titions of N whose lengthl (l) ~the number of the nonzero
l i ’s! is less than or equal top. In terms of Young tableaux,
this amounts to retaining only those irreducible representa-
tions ofSN in which the number of boxes in the first column
is <p. The partition function for this case is

ZN
PB~x1 , . . . ,xM ;p!5 (

l
ulu5N
l ~l!<p

sl~x1 , . . . ,xM !. ~22!

Similarly, the para-Fermi case of orderp arises when we
restrictl in ~17! to those partitions for whichl1<p, or, in
the language of partitions, to those partitions whose conju-
gate partitionl8 is of length<p . In terms of Young tab-
leaux this implies retaining only those irreducible represen-
tations ofSN in which the number of boxes in the first row is
<p. The partition function appropriate to this case is

ZN
PF~x1 , . . . ,xM ;p!5 (

l
ulu5N
l ~l8!<p

sl~x1 , . . . ,xM !. ~23!

Likewise, for the (p,q) statistics the corresponding symmet-
ric functionZN

(p,q)(x1 , . . . ,xM) is obtained by restricting the
sum in ~17! to those partitions for whichl (l)<p and
l (l8)<q. The partition functions in all these cases can be
expressed in terms of the monomial symmetric functions as

ZN~x1 , . . . ,xM !5(
l

S (
x

KxlDml~x1 , . . . ,xM !,

~24!

with x appropriately restricted.
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It may be noted that ifp,q>N, all these cases reduce to
HST. In other words, the HST statistics is thep→` limit of
para-Bose and para-Fermi statistics of orderp.

As an illustration, let us consider five para particles of
order p53. Using ~24! and the table for Kostka numbers
given in Ref.@11#, we find that the canonical partition func-
tion for the para-Bose case is

Z5
PB5m~5!12m~41!13m~32!15m~312!

17m~221!112m~213!121m~15! , ~25!

and

Z5
PF5m~32!12m~312!14m~221!19m~213!116m~15! ~26!

for the para-Fermi case.@Here, for brevity, we have omitted
the arguments (x1 , . . . ,xM) and have used a compressed but
obvious notation for the partitions.#

The expressions for the partition functions given above
are in terms of the Schur and the monomial symmetric func-
tions. One can express them in terms of other symmetric
functions as well using some formulas that involve what are
known as Jacobi-Trudi determinants. They prove to be ex-
tremely useful in carrying out the sums in~22! and~23! with
restrictions on the lengths of the partitions and are given by
@11,12#,

sl~x1 , . . . ,xM !5det~hl i2 i1 j !, 1< i , j< l ~l!, ~27!

sl~x1 , . . . ,xM !5det~el
i82 i1 j !, 1< i , j< l ~l8!. ~28!

Here the complete symmetric functionshr(x1 , . . . ,xM) and
the elementary symmetric functionser(x1 , . . . ,xM) are de-
fined as follows:

hr~x1 , . . . ,xM !5 (
l

ulu5r

ml~x1 , . . . ,xM !, ~29!

er~x1 , . . . ,xM !5 (
i1, i2,•••, i r

xi1xi2•••xi r. ~30!

Using these formulas one can express the partition functions
above in terms of eitherh’s or e’s, which, as we shall see,
are simply the canonical partition functions for bosons and
fermions. As an illustration, let us consider the Bose case.
Here, sincel (l)<1, we have only one term on the rhs of
~22! corresponding tol5(N,0,0, . . . ,0). Using~24! we ob-
tain

ZN
B~x1 , . . . ,xM !5hN~x1 , . . . ,xM !. ~31!

Similarly, for the Fermi case, one has

ZN
F~x1 , . . . ,xM !5eN~x1 , . . . ,xM !. ~32!

Consider para-Bose of order 2. Using~22! and ~24! we ob-
tain

ZN
PB~x1 , . . . ,xM ;2!5hN1 (

l11l25N
l1>l2

detS hl1
hl111

hl221 hl2
D ,
~33!

which on simplification leads to

ZN
PB~x1 , . . . ,xM ;2!

5H hP2 ~x1 , . . . ,xM ! if N52P

hP11~x1 , . . . ,xM !hP~x1 , . . . ,xM ! if N52P11 .

~34!

The result for para-Fermi of order 2 is obtained by replacing
h’s by e’s. Thus we obtain the results due to Suranyi@8#,
which arise as a special case of~22! and ~23!.

Finally, for the HST statistics, which, as noted above, is
the p→` limit of para-Bose and para-Fermi statistics, the
grand canonical partition function can be calculated exactly
using a known result@11# for the Schur functions and is
given by

ZHST~x1 , . . . ,xM !5)
i

1

~12xi !
)
i, j

1

~12xixj !
, ~35!

where xi5exp@2(bei1m)#. This grand canonical partition
function has an interesting structure. It is the product of the
grand canonical partition functions of two bosonic systems,
one with single-particle energiese i and the other with single-
particle energiese i1e j ,i< j .

To conclude, by adopting the approach propounded in
Refs. @9# and @10#, and essentially using just the Frobenius
formula ~13! we have been able to obtain canonical partition
functions for all statistics based on the permutation group
including those for which no simple second quantized nota-
tion is available. In all these statistics the Schur functions
play a unifying role. The canonical partitions for all these
systems can be expressed as sums of Schur functions with
coefficient one. While we have also been able to find an
exact expression for the grand canonical partition function
for a para-Fermi system of any order, the work on para-Bose
systems is still in progress and detailed analyses of the ther-
modynamic properties derivable from these results would be
presented elsewhere.
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